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Abstract. Many adhesion receptors have high three- 
dimensional dissociation constants (Kd) for counter- 
receptors compared to the Kds of receptors for soluble 
extracellular ligands such as cytokines and hormones. 
Interaction of the T lymphocyte adhesion receptor 
CD2 with its counter-receptor, LFA-3, has a high solu- 
tion-phase/Ca (16 txM at 37°C), yet the CD2/LFA-3 in- 
teraction serves as an effective adhesion mechanism. 
We have studied the interaction of CD2 with LFA-3 in 
the contact area between Jurkat T lymphoblasts and 
planar phospholipid bilayers containing purified, fluo- 
rescently labeled LFA-3. Redistribution and lateral 
mobility of LFA-3 were measured in contact areas as 
functions of the initial LFA-3 surface density and of 
time after contact of the cells with the bilayers. LFA-3 
accumulated at sites of contact with a half-time of ~15 
min, consistent with the previously determined kinetics 

of adhesion strengthening. The two-dimensional Ka for 
the CD2/LFA-3 interaction was 21 molecules/txm 2, 
which is lower than the surface densities of CD2 on T 
cells and LFA-3 on most target or stimulator cells. 
Thus, formation of CD2/LFA-3 complexes should be 
highly favored in physiological interactions. Compari- 
son of the two-dimensional (membrane-bound) and 
three-dimensional (solution-phase) Kas suggest that 
cell-ceU contact favors CD2/LFA-3 interaction to a 
greater extent than that predicted by the three-dimen- 
sional Ka and the intermembrane distance at the site of 
contact. LFA-3 molecules in the contact site were capa- 
ble of lateral diffusion in the plane of the phospholipid 
bilayer and did not appear to be irreversibly trapped in 
the contact area, consistent with a rapid off-rate. These 
data provide insights into the function of low affinity in- 
teractions in adhesion. 

M 
ULTICELLULAR organisms use cell contact and 
adhesion for both structural integrity and short 
range communication. In the immune system, 

adhesion of T cells to antigen presenting cells (APCs) 1 is 
mediated by antigen receptors and adhesion receptors. 
The T cell antigen receptor and the accessory molecules 
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1. Abbreviat ions used in this paper: APC, antigen presenting cell; CD2, 
cluster of differentiation antigen 2; FPR, fluorescence photobleaching re- 
covery; GPI-LFA-3, glycosyl-phosphatidylinositol-linked LFA-3; IgSF, 
immunoglobulin superfamily; LFA-3, lymphocyte function-associated an- 
tigen 3; MHC, major histocompatibility complex; OG, octyl-13-o-glucopy- 
ranoside; PC, phosphatidylcholine; TCR, T cell antigen receptor; TM- 
LFA-3, transmembrane LFA-3. 

CD4 and CD8 (cluster of differention antigens 4 and 8) 
bind directly to antigenic peptide: major histocompatibil- 
ity complex (MHC) protein adducts (15, 24, 31). Parallel 
interactions involving CD2 with lymphocyte function-asso- 
ciated antigen 3 (LFA-3) and LFA-1 with ICAMs 1, 2, and 
3 are required for stable cell-cell adhesion (14, 18, 40). 
CD2 and LFA-3 are members of the immunoglobulin su- 
perfamily (IgSF), each possessing two fg-like domains, 
that bind to each other through an interaction involving 
their NH2-terminal Ig-like domains (1, 20, 32, 39). If the 
mode of interaction between CD2 and LFA-3 is similar to 
that employed by other adhesion molecules of the IgSF, 
then the CD2/LFA-3 interaction may serve as a prototype 
for adhesive interactions involved in neural cell adhesion, 
cell migration in development and tumor cell metastasis. 

The CD2/LFA-3 interaction was the first heterophilic 
adhesion mechanism to be fully reconstituted (17, 37, 41). 
It was also the first heterophilic mechanism for which the 
solution-phase interaction was rigorously analyzed. The 
dissociation constant (Kd) and off-rate for the interaction 
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between purified soluble forms of CD2 and LFA-3 are 1.6 
× 10 -5 M and greater than 4 s -1, respectively (45). It has 
been suggested that the high Ka and fast off-rate of the 
CD2/LFA-3 interaction allows for cell--cell dissociation, 
which is essential for the migration of long-lived T lym- 
phocytes (44). 

Before the description of heterophilic adhesion mecha- 
nisms such as that involving CD2 and LFA-3, the three 
part interaction among cellular Fc receptors, hapten-spe- 
cific antibody, and hapten-coated surfaces or liposomes 
provided an important model for molecular studies of ad- 
hesion. A classic study by McCloskey and Poo (26) showed 
that the interaction of a cell bearing fluorescently labeled 
anti-DNP antibody-IgeFc receptor complexes with a lipo- 
some incorporating DNP-labeled phospholipids efficiently 
drove accumulation of antibody-Fc receptor complexes 
into the area of contact between the cell and the liposome. 
This "trapping" effect correlated with adhesion strength- 
ening. Receptor accumulation did not require an active 
contribution from the cell, suggesting that it was driven by 
the extracellular binding interaction (Kd = 10 -s M) be- 
tween antibody and DNP. Although this study did demon- 
strate the importance of adhesion molecule trapping in 
contact areas as a general mechanism, it did not determine 
an upper limit for the K d of an interaction that could be 
mediated by this trapping or syn-capping effect. This is an 
important question, since the CD2/LFA-3 interaction 
functions in adhesion with a solution-phase Kd of 16 p~M. 
Other studies showing redistribution of adhesion mole- 
cules to contact areas have not excluded (or have specifi- 
cally invoked) interactions with the cytoskeleton as a con- 
tributing or necessary process in adhesion receptor 
accumulation (10, 11, 21, 22, 28, 30, 48). Therefore, such 
studies do not directly address the role of the Kd of adhe- 
sion receptor interactions in receptor redistribution. 

We have previously shown that a glycosylphosphatidyl- 
inositol anchored isoform of LFA-3 (GPI-LFA-3) is more 
potent than a transmembrane isoform in mediating adhe- 
sion of CD2 ÷ T lymphoblasts to glass-supported planar bi- 
layers reconstituted with LFA-3 (9). This difference in po- 
tency is related to the observation that transmembrane 
proteins are laterally immobile (9, 27), whereas phospho- 
lipids (9, 27) and GPI-anchored proteins (9) are laterally 
mobile, in glass-supported planar bilayers. One likely 
mechanism for the effect of lateral diffusion on adhesion 
involves an increase in the rate of productive collisions be- 
tween laterally mobile LFA-3 and CD2. A second likely 
mechanism involves trapping of laterally mobile LFA-3 in 
the contact area, which increases the effective LFA-3 den- 
sity. In the present study we have labeled purified GPI-  
LFA-3 with FITC, incorporated FITC-LFA-3 into glass- 
supported planar bilayers, and characterized changes in 
the surface distribution and diffusion coefficient of LFA-3 
induced by interaction with CD2 ÷ T lymphoblasts. We 
find that LFA-3 accumulates in contact areas with T lym- 
phoblasts. Equilibrium binding analysis shows that the 
two-dimensional Ka for the CD2/LFA-3 interaction is low 
relative to the normal surface densities of CD2 and LFA-3 
in biological membranes, suggesting that binding ap- 
proaches saturation in biological contact areas. Compari- 
son between two- and three-dimensional Kas for the CD2/ 
LFA-3 interaction suggests that CD2 and LFA-3 are un- 

der topological constraints such as those described by Bell 
et al. (4) as a "confinement region", or a thin subregion of 
volume within the contact area in which adhesion mole- 
cule binding sites are localized. Finally, we detect lateral 
diffusion of "bound" LFA-3 in the contact area, consistent 
with a rapid off-rate for the CD2/LFA-3 binding interaction. 

Materials and Methods 

Monoclonal Antibodies and Cell Lines 
The monoclonal antibodies TS2/9 (anti-LFA-3) and TS2/18 (anti-CD2) 
were originally described in Sanchez-Madrid et al. (34). The Jurkat T lym- 
phoma cell line was maintained in RPMI 1640 containing 10% fetal bo- 
vine serum, 5 mM glutamine and 50 p.g/ml gentamicin. Jurkat cells in log 
phase of growth (6-9 × 105 cells/ml) were used for all experiments. 

Purification and Modification of LFA-3 
GPI-LFA-3 was affinity-purified from human erythrocytes, as previously 
described (17). To avoid modification of the CD2 binding surface on criti- 
cal lysines, LFA-3 was bound to TS2/9-coupled Sepharose CL-4B before 
conjugation with FITC. Purified LFA-3 was added in a sufficient amount 
to saturate 1 ml of TS2/9 Sepharose CL-4B (2 mg/ml) in neutralized elu- 
tion buffer, and the mixture was rotated at 4°C for 4--16 h. The Sepharose 
was washed extensively at 4°C in 0.1 M NaHCO3/Na2CO3, pH 9.0, 0.05% 
Triton X-100, and excess buffer was removed. FITC was dissolved in di- 
methylformamide to a concentration of 80 mM, and the solution was di- 
luted 1:9 in 1 ml of 0.1 M NaHCO3/Na2CO3, pH 9.0, 0.05% Triton X-100 
and added immediately to the LFA-3 TS2/9 Sepharose mixture. After 2 h 
of end over end rotation at room temperature the slurry was centrifuged, 
the supernatant was removed, a fresh preparation of 8 mM FITC in 0.1 M 
NaHCO3/Na2CO3, pH 9.0, 0.05% Triton X-100 was added, and the room 
temperature incubation was repeated. The slurry was transferred to a c01- 
umn and washed with 50 volumes of 25 mM Tris, pH 8.6, 0.15 M NaCI, 1% 
octyl-13-D-glucopyranoside (OG). FITC-modified LFA-3 (FITC-LFA-3) 
was eluted with 50 mM glycine, pH 3.0, 0.15 M NaC1, 1% OG and col- 
lected in tubes containing 1 M Tris, pH 8.6, 1% OG. 

Preparation of Liposomes and Planar Bilayers 
Unilamellar liposomes were prepared by OG dialysis (7,29). Egg phos- 
phatidylcholine (PC) (Avanti Polar Lipids, Inc., Pelham, AL) was dis- 
solved at 0.4 mM in 25 mM Tris, pH 8.0, 0.15 M NaCI, 2% OG, and then 
mixed with an equal volume of 25 mM Tris, pH 8.0, 0.15 M NaCI, 2% OG 
containing different amounts of LFA-3 or FITC-LFA-3. Liposome sus- 
pensions were formed by dialysis and stored at 4°C under argon to mini- 
mize lipid oxidation. 

Planar bilayers containing purified LFA-3 or FITC-LFA-3 were 
formed as previously described (17), with the following modifications. In 
some experiments, bilayers were formed from a mixture of liposomes con- 
taining FITC-LFA-3 and purified LFA-1 (16). A diamond pencil was 
used to place a shallow scratch in the center of clean coverslips to permit 
identification of the plane of the bilayer. In a 2-1 tank of 25 mM Hepes, pH 
7.4, 147 mM NaC1, 5 mM glucose, 1% bovine serum albumin (HBS), the 
planar bilayer bearing coverslips were transferred to glass slides that had 
been coated with 10-ram rings of vacuum grease (Dow-Corning, Corning, 
NY). A Jurkat cell suspension was pipetted within the grease ring just as 
the coverslip was slowly lowered and pressed into the grease to trap a 
small number of cells. The incubation was initiated when the system was 
inverted coverslip down. In some cases, CD2 molecules on Jurkat cells 
were blocked by preincubating cells with TS2/18 at 100 p~g/ml for 30 min 
and washing three times with HBS. Cells were incubated with bilayers at 
room temperature. LFA-3 site densities on planar bilayers were deter- 
mined by radioimmunoassay, as previously described (9). 

Fluorescence Photobleaching Recovery 
Fluorescence photobleaching recovery (FPR) is used to measure the lat- 
eral mobility of fluorescently labeled proteins and lipids in membranes 
(2). Spot FPR was performed on a Meridian Instruments (Okemos, Mich- 
igan) ACAS 570 Interactive Laser Cytometer. Data were analyzed using a 
nonlinear least squares method (5) to yield both the lateral diffusion coef- 
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ficient and the fraction of fluorescently labeled molecules that were free 
to diffuse on the time scale of the experiment (typically 45-90 s). The 
ACAS 570 uses a computer-interfaced scanning stage to generate line 
scans through the bleach site that are used to monitor non-bleached re- 
gions of the bilayer as an internal control. Bleaching pulses were 30-100 
ms in duration using a beam power of 200 p,W. Measuring pulses were 4 
Ixs in duration using a beam power of 100-225 p,W. The 1/e 2 diameter of 
the laser beam was measured as 1.3 +- 0.07 ixm (mean +- SD, n = 6) using 
a 40× 1.3 N.A. oil immersion objective. Non-FITC fluorescence was ex- 
cluded from the emission detection system by using a 530 -+ 15 nm band 
pass filter. The fluorescence signal from unlabeled bilayers was less than 
10% of that from labeled bilayers, and was subtracted from the total signal. 

Image Analysis 
Two-dimensional fluorescence images of FITC-LFA-3 distribution in egg 
PC planar bilayers were obtained using the Meridian ACAS 570. Most im- 
ages were taken as 90 x 90-1xm fields using a step size of 0.5 Ixm. Bright 
field images of Jurkat cells on bilayers were used to draw outlines of the 
cells (i.e., cell profiles) on the fuorescence images. These outlines were 
used to determine projected cell areas and to define areas of the bilayer 
not in contact with ceils. Projected cell area was defined as the area of a 
disk in the horizontal plane through the widest part of the cell. Contact 
sites were defined mathematically to include all pixels having fluorescence 
values/>120% of the average pixel intensity outside the cell outlines. The 
average autofluorescence of Jurkat cells adherent to unlabeled LFA-3 in 
egg PC planar bilayers was subtracted as a background. Average fluores- 
cence intensities within areas of cell contact and non-cell contact were 
converted to LFA-3 surface densities by setting the average fluorescence 
intensity in multiple fields of FITC-LFA-3 equal to the surface density of 
LFA-3 measured by iodinated antibody binding. When laser power and 
photomultiplier tube gain were held constant, there was a linear relation- 
ship between fluorescence intensity (arbitrary units) and LFA-3 site den- 
sity determined by radioimmunoassay over the range used in these exper- 
iments (data not shown). 

Bound receptor densities were determined using conventions for equi- 
librium dialysis (43). All data were corrected for background by subtrac- 
tion of fluorescence signals from planar bilayers without FITC-LFA-3 or 
from cells adherent to bilayers containing unlabeled LFA-3, as appropri- 
ate. The density of free LFA-3 in the bilayer (i.e., of LFA-3 not interacting 
with cells) was determined from the average LFA-3 density outside the 
cell outlines. The density of bound LFA-3 in a contact site was defined as 
the average LFA-3 density within the contact site minus the free LFA-3 
density in the bilayer. The total number of bound LFA-3 molecules was 
determined by integrating the density of bound LFA-3 over the contact 
area. 

Two-Dimensional Scatchard Analysis 
LFA-3 surface densities, determined as described above, were plotted as 
bound on the abscissa and bound/free on the ordinate. Linear least 
squares analysis was used to determine the slope, which is proportional to 
the negative reciprocal of the two-dimensional K d (mol/lxm2). Extrapola- 
tion to the abscissa was used to determine the binding at saturation (mol/ 
izm 2 of contact area) (35). 

Results 

Redistribution of LFA-3 into Areas of Planar Bilayers 
in Contact with Jurkat T Cells 

GPI-LFA-3 was purified from human erythrocytes by im- 
munoaffinity chromatography. FITC was conjugated to 
LFA-3 bound to a Sepharose-coupled antibody that blocks 
interaction with CD2, to protect the CD2-binding site 
from modification by fluorophore. FITC-LFA-3 was in- 
corporated into phospholipid liposomes which were then 

Figure 1. Pseudo co lo r  fluo- 
rescence  images  of  F ITC-  
L F A - 3  d is t r ibu t ion  in glass- 
s u p p o r t e d  p l ana r  bi layers .  
(a) U n i f o r m  d i s t r ibu t ion  
o f  F I T C - L F A - 3  (120 tool/ 
ixm 2) in a p l ana r  bi layer  be-  
fore  in te rac t ion  with cells. 
(b)  D i s t r ibu t ion  of F ITC ' -  
L F A - 3  (initial dens i ty ,  
1,000 mol / ixm ~) in a p l ana r  
b i layer  30 m i n  af ter  incuba-  
t ion wi th  Ju rka t  T cells. (c) 
D i s t r ibu t ion  of F I T C -  
L F A - 3  (initial densi ty ,  120 
mol /p ,m 2) in a p l ana r  bi- 
layer  30 rain a f te r  incuba-  
t ion with Ju rka t  T cells. (d) 
D i s t r ibu t ion  of  f luores-  
cence  in a p l ana r  bi layer  
con ta in ing  120 m o l / ~ m  2 o f  
F I T C - L F A - 3  an d  500 mol /  
~ m  2 o f  un l abe l ed  LFA-1  30 
rain af ter  i ncuba t ion  wi th  
TS2/18 p r e t r e a t e d  Ju rk a t  T 
cells. T h e  pro jec t ions  o f  at- 
t ached  cells are  ou t l ined  in 
white .  T h e  p s e u d o c o l o r  
scale is m a r k e d  in arb i t rary  
f luorescence  units .  E a c h  
image  represen t s  8,100 ~ m  2. 
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allowed to interact with glass coverslips to form planar 
phospholipid bilayers on the glass surface. Quantitative 
fluorescence imaging revealed a uniform distribution of 
FITC-LFA-3 in the planar bilayers (Fig. 1 a). 

Upon incubation of planar bilayers with CD2 ÷ Jurkat T 
cells, FITC-LFA-3 redistributed into areas of contact with 
cells (Fig. 1, b and c, see also Figs. 4 and 5). The following 
experiment demonstrated that FITC-LFA-3 redistribu- 
tion required specific interaction with CD2 on T cells. Jur- 
kat cells were allowed to adhere to planar bilayers formed 
by mixtures of liposomes containing FITC-LFA-3 and pu- 
rified LFA-1 in the presence of Mg 2÷. LFA-1 dependent 
adhesion, mediated by binding of LFA-1 to ICAMs on the 
Jurkat cells, had no effect on FITC-LFA-3 redistribution 
into the contact areas. Blocking of CD2 molecules on the 
Jurkat cells with TS2/18, a mAb known to block interaction 
of CD2 with LFA-3, prevented redistribution of F ITC-  
LFA-3 into the LFA-l-media ted  contact areas (Fig. 1 d). 

Kinetics of Contact Area Development 

Contact areas were defined operationally as areas of sig- 
nificantly increased LFA-3 accumulation. Fig. 2 shows the 
size of contact areas and the average density of bound 
LFA-3 within contact areas as a function of time after in- 
cubation of Jurkat cells with planar bilayers initially pre- 
senting 120 LFA-3 mol/p.m 2. The mean size of the contact 
areas increased rapidly over the first 28 min of incubation 
and then leveled off at an average size of 98 ~m 2. Like- 
wise, the density of bound LFA-3 in the contact areas in- 
creased steadily over the first 31 min before leveling off at 
an average density of 330 mol/p~m 2. Similar kinetics of con- 
tact area expansion were observed with bilayers initially 
presenting 120 (Fig. 2), 300, and 1,000 LFA-3 mol//xm 2 
(not shown). 

Dependence of Bound LFA-3 Density on Cell Size 

Jurkat cells display size heterogeneity in log phase cul- 
tures. The effect of this heterogeneity on FITC-LFA-3 ac- 
cumulation was assessed. FITC-LFA-3 fluorescence im- 
ages were analyzed with respect to projected cell area 
obtained from matched bright-field images. Although 
larger cells formed larger contact areas within the planar 
bilayer, the average density of LFA-3 within these contact 
areas was the same as that in the contact areas formed by 
smaller cells (Fig. 3). 

The spatial distribution of LFA-3 within contact areas 
was also analyzed. Most cells generated contact areas with 
a single, central area of concentrated ligand and decreas- 
ing ligand density toward the periphery (see Figs. 4 and 5). 
Peak fluorescence value within a contact area was defined 
as the greatest fluorescence value held by at least four ad- 
jacent pixels (i.e., by an area of at least 1 p~m2). The maxi- 
mum density of bound FITC-LFA-3 was 1,000 mol/ixm 2. 

Lateral Diffusion of LFA-3 in Contact Areas 

Fluorescence photobleaching recovery was used to mea- 
sure the fraction of FITC-LFA-3 that was free to diffuse 
in the planar bilayer (i.e., the fractional mobility) and the 
lateral diffusion coefficient of the mobile fraction (Figs. 4 
and 5; Table I). Fig. 4 shows the time course of fluores- 
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Figure 2. Kinetics of FITC-LFA-3 interaction with Jurkat T 
ceils. Jurkat cells were allowed to adhere for various lengths of 
time to planar egg PC bilayers containing FITC-LFA-3. Fluores- 
cence images were analyzed for (a) size of contact area (p~m 2) and 
(b) density of bound FITC-LFA-3 in contact area (mol/g, m2). 
Data were taken on planar bilayers initially presenting 120 LFA- 
3 mol/p~m 2. Each experimental point represents mean ___ SEM for 
all contact areas in a single microscope field. 

cence recovery following photobleaching of FITC-LFA-3 
in a contact area between a Jurkat T cell and a planar bi- 
layer initially presenting 120 LFA-3 mol/ixm 2. Fig. 5 shows 
prebleach, 0 s post-bleach and 90 s post-bleach line scans 
of FITC-LFA-3 fluorescence in contact areas between 
cells and bilayers initially presenting 120 (A, B), 300 (C, 
D) and 1,000 (E, F) LFA-3 mol/ixm 2. The pre-bleach line 
scans vividly display the relationship between initial LFA- 
3 density in the bilayer and peak LFA-3 accumulation in 
contact areas. FITC-LFA-3 in planar bilayers reconsti- 
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Figure 3. Cell size dependence of FITC-LFA-3 redistribution in 
planar bilayers initially presenting 1,000 LFA-3 mol/l~m 2. Jurkat 
cells were allowed to adhere to planar egg PC bilayers containing 
FITC-LFA-3. Fluorescence images were analyzed for (a) size of 
contact area (ixm z) and (b) density of bound FITC-LFA-3 in con- 
tact area (mol/~m z) as a function of projected cell area obtained 
from matched bright field images. Each symbol represents data 
from a single adherent cell. 

tuted at 1,000 mol/l~m 2 had a lateral diffusion coefficient 
of 5.9 ~< 10 -9 cm2/s and a fractional mobility of 72% (Ta- 
ble I), in agreement with our previous observations (9). 
The diffusion coefficient of FITC-LFA-3 was decreased by 
50-75% in areas of contact with Jurkat cells (Table I). The 
fractional mobility remained high in contact areas, as indi- 
cated by the nearly complete recovery of FITC-LFA-3 
fluorescence after photobleaching of a contact area (Figs. 
4 and 5, Table I). 

Determination o f  Equilibrium Binding Parameters: 
Two-Dimensional Scatchard Analysis 

The density and total number of bound and free F ITC-  
LFA-3 molecules in contact areas between Jurkat cells 
and planar bilayers were analyzed by methods that are 
routinely applied to solution-phase equilibrium dialysis 
data. In the latter technique, receptors are restricted to a 
subregion by a semipermeable membrane, and small 
ligands capable of diffusion through the membrane un- 
dergo net concentration on the side of the membrane that 
contains a specific receptor (43). The adhesion experiment 
here was modeled as a two-dimensional version of the 
equilibrium dialysis experiment, in which CD2 and LFA-3 
molecules were spatially restricted by the Jurkat cell 
plasma membrane and the planar bilayer, respectively. Ta- 
ble II summarizes the equilibrium surface density and to- 
tal number of free FITC-LFA-3 molecules in non-contact 
regions, and of bound FITC-LFA-3 molecules in regions 
of cell-bilayer contact, for three initial FITC-LFA-3 densi- 
ties. It should be noted that the three experimental FITC- 
LFA-3 surface densities span the physiological range in bio- 
logical membranes. Data from Table II were transformed 
into a plot of bound LFA-3/free LFA-3 on the ordinate 
and bound LFA-3 on the abscissa (35) (Fig. 6). The three 
points fell on a line with a negative reciprocal slope (Kd) of 
21 mol/~Lm 2 and an intercept on the abscissa (Bmax) of 430 
mol/~Lm 2. This analysis predicts that, since the density of 
CD2 on a T cell is on the order of 100 mol/~Lm 2, the CD2/ 
LFA-3 interaction in biological membranes will be driven 
toward saturation upon establishment of cell-cell contact. 

D i s c u s s i o n  

We have used glass-supported planar phospholipid bilay- 
ers reconstituted with defined surface densities of laterally 
mobile FITC-LFA-3 to quantify the interaction between 
CD2 and LFA-3 in a model cell-cell contact area. Analysis 
of LFA-3 surface distribution and lateral mobility in the 
presence of CD2 ÷ Jurkat T cells reveals time-dependent 
redistribution of LFA-3 into contact sites and slowing of 
LFA-3 diffusion. Redistribution of LFA-3 reaches steady- 
state in 30 rain and is maintained for several hours. At low 
densities of GPI-LFA-3 in planar bilayers adhesion of Jur- 
kat cells increases dramatically between 5 and 20 min of 
incubation (9), consistent with the time-course of LFA-3 
accumulation observed here. At higher GPI-LFA-3 densi- 
ties adhesion of Jurkat cells is stable at 5 rain (9), although 
redistribution of LFA-3 into contact areas does not reach 
steady-state until 30 rain of incubation, suggesting that for- 
mation of a sufficient number of CD2/LFA-3 complexes to 
stabilize the contacts occurs before the system reaches 
equilibrium. These results are in qualitative agreement 
with those of McCloskey and Poo (26), who found that ad- 
hesion molecule (antibody-DNP complex) redistribution 
is closely associated with adhesion strengthening. We ex- 
tend the results of McCloskey and Poo (26) on a high- 
affinity antibody/hapten interaction (solution-phase K d = 

10 -8 M) to an interaction between adhesion molecules 
with a much higher solution-phase Kd (1.6 × 10 -5 M) (44). 

Our results indicate that CD2 in Jurkat cell membranes, 
like LFA-3 in the planar bilayers, also accumulates in con- 
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Figure 4. Accumulation and 
lateral mobility of FITC- 
LFA-3 in a region of contact 
with a Jurkat T cell. Jurkat 
cells were allowed to settle 
on a bilayer initially present- 
ing 120 LFA-3 mol/l~m 2 for 
30 min at 24°C. The ACAS 
570 was used to monitor fluo- 
rescence on a line passing 
through the center of a cell. 
The prebleach scan (green) 
shows FITC-LFA-3 accumu- 
lation in the contact area. 
The vertical line indicates the 
center of the bleaching spot, 
which was used to initiate a 
fluorescence photobleaching 
recovery experiment. Fluo- 
rescence recovery was moni- 
tored by line scans at 0 (or- 
ange), 1.5, 3, 4.5, 6, 7.5 (red), 
9, 15, 21, 27, 33 (blue), 39, 45, 
51, 57, 63 (dark red), 69, 75, 
81, 87, and 93 (purple) seconds 
after the bleach. Diffusion 
coefficient, 1.0 × 10 -9  cm2/s. 
Fractional mobility, 85 %. 

tact areas. There are ~160,000 CD2 molecules on an aver- 
age Jurkat T cell (33), and ~43,000 are engaged in an aver- 
age contact area at steady-state. CD2 molecules are 
uniformly distributed on Jurkat cells in suspension (un- 
published observations), yielding an initial CD2 surface 
density between 100 and 200 mol/l~m 2. The maximum den- 
sity of  bound F I T C - L F A - 3  within a contact area, which 
should correspond exactly to the density of bound CD2 
within the contact site, is 1,000 mol/txm 2. Thus, CD2 redis- 
tributes by a maximum of 5-10-fold in contact areas. Con- 
sistent with this observation, T cell CD2 is found to redis- 
tribute into areas of contact with cells expressing high 
levels of LFA-3 (30). 

F I T C - L F A - 3  in a contact area manifests a reduced lat- 
eral diffusion coefficient compared to F I T C - L F A - 3  out- 
side a contact area. Equilibrium binding of 83% of LFA-3 
molecules to CD2 within a contact area causes the diffu- 
sion coefficient of LFA-3 to decrease from 5.9 × 10 -9 cm2/ 
s to 1.3 × 10 -9 cm2/s. One explanation for this finding 
could be that CD2/LFA-3 complexes have a diffusion co- 
efficient similar to that of CD2 in the Jurkat cell mem- 
brane (7.2 × 10 -10 cm2/s) (23). The suggestion that adhe- 
sion receptor/counter-receptor complexes diffuse laterally 
is intriguing, but may be difficult to establish in this system 
due to the rapid off-rate (>4  s -1) of the CD2/LFA-3 inter- 
action measured in solution (45). Nearly complete fluores- 
cence recovery is observed even when most of  the accu- 
mulated F I T C - L F A - 3  in a contact area is bleached, 
suggesting that bleached F I T C - L F A - 3  is replaced by fresh 

F ITC-LFA-3  from the bilayer outside the contact area. 
This result suggests that transient interactions (19) be- 
tween CD2 and LFA-3, even in the confines of the contact 
area, are a more likely explanation for the observed lateral 
diffusion of  LFA-3 than the coupled diffusion of  long- 
lived CD2/LFA-3 complexes. 

The binding interaction responsible for the accumula- 
tion of LFA-3 in contact areas was analyzed by methods 
used to analyze interactions between soluble ligands and 
receptors (35). We obtained a two-dimensional Kd of  21 
mol/~m z, although the lowest initial LFA-3 density in bi- 
layers was 120 mol/izm 2. It was not possible to perform 
equilibrium experiments using planar bilayers initially pre- 
senting fewer than 120 mol/l~m 2, because such experi- 
ments resulted in surface densities of free F I T C - L F A - 3  in 
non-contact regions that were below the fluorescence de- 
tection limits of the A C A S  570. Thus, it is not possible to 
conclude from the Scatchard analysis whether the CD2/ 
LFA-3 interaction exhibits one or more than one class of 
binding sites. The region of the Scatchard plot sampled 
here spans the range of physiological LFA-3 surface densi- 
ties, however, and should be relevant to CD2/LFA-3 inter- 
actions in biological membranes.  Furthermore,  the region 
of the Scatchard plot near the abscissa typically describes 
the lowest affinity (highest capacity) sites. Thus, if more 
than one class of sites is present, the experiments reported 
here should yield an upper limit for the two-dimensional 
Ks of the CD2/LFA-3 interaction. Because physiological 
surface densities of LFA-3 exceed our experimentally de- 
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Figure 5. Accumulation and lateral mobility of FITC-LFA-3 in regions of contact between Jurkat cells and planar bilayers containing 
different initial densities of FITC-LFA-3. Jurkat cells were allowed to settle on bilayers initially presenting 120 (A and B), 300 (C and 
D), or 1,000 (E and F) LFA-3 mol/ixm 2 for 30-120 min at 24°C. Prebleach (green), 0 s post-bleach (blue) and 90 s post-bleach (red) scans 
are shown to indicate the extents of FITC-LFA-3 accumulation, FITC-LFA-3 bleaching and FITC-LFA-3 fluorescence recovery, re- 
spectively. To minimize photobleaching during the fluorescence recovery phase of the experiment, the laser power and photomultiplier 
tube gain were adjusted for each bilayer to yield an acceptable signal level using minimal monitor beam power. Therefore, fluorescence 
intensity levels are not directly comparable among the various bilayer samples. 

t e rmined  lower limit for the half-saturat ion poin t  (Ko) of 
CD2/LFA-3  binding, the physiological  CD2/LFA-3  system 
appears  to opera te  near  saturat ion once a contact  area  is 
formed.  

The two-dimensional  Kd measured  here  should take 
into account all active and passive contr ibut ions of the Jur- 
kat  cells to the CD2 affinity for LFA-3.  Adhes ion  is 
thought  to be regula ted  by a number  of cellular processes,  
such as the association of adhesion receptors  with the cy- 

toskele ton and receptor  clustering. I t  is not  clear whether  
these active contr ibut ions modula te  the two-dimensional  
Kd, however.  To compare  the measured  two- and three-  
dimensional  KdS for the CD2/LFA-3  interact ion,  we make  
the conservative assumptions that  the Ig-like domains  of 
CD2 are conformat ional ly  fixed and that  the soluble re- 
combinant  molecules used by van der  Merwe and col- 
leagues to assess the  three-dimensional  Kd (45) are identi-  
cal in uni tary interact ion to the cell surface CD2 and 

Table I. Lateral Mobility of FITC-LFA-3 in Regions of Contact between Planar Bilayers and Jurkat T Cells 

Sample Density* f D B/Tot. * n 

F I T C - L F A - 3  in egg  PC, no cells present  1,000 and  300 § 72 ± 15 II 5.9 ± 2.9 - -  38 
F I T C - L F A - 3  in egg  PC, Jurkat  cells present  1,000 88 ± 10 2.8 ± 1.6 31% 42 
" 300 84 ± 14 2.3 ± 1.5 63% 31 
" 120 83 ± 13 1.3 ± 0.9 83% 63 

f, Fractional mobility, %. D, Diffusion coefficient, x 109 cmZls, n, Number of measurements. 
* Initial surface density, FITC-LFA-3 mol/Ixm e. 
Bound LFA-3 molecules/total LFA-3 molecules in contact site. 
Mobility data in the absence of cells were identical for bilayers containing LFA-3 at medium (300 lxm -2) and high ( 1,0130 ixm -2) surface densities. 

IIMean -+ SD. 
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Table II. Redistribution of FITC-LFA-3 into Regions of Contact between Planar Bilayers and Jurkat T Cells 

Equilibrium surface Equilibrium surface Equilibrium number of 
Initial LFA-3 density of LFA-3 density of bound LFA-3 bound LFA-3 molecules 
surface density* in non-contact regions N in contact regions ~ (B + F)/F ~ per cell × 10 -~ll n 

1,000 950 -- 1491 4 430 --+ 94 1.4 4.3 ± 2.0 28 

300 250 ± 31 4 390 ± 183 2.6 3.9 +-- 2.5 26 

120 68 ± 15 5 330 --- 135 5.9 3.2 ± 1.7 49 

Data include all measurements performed on membranes incubated with cells for at least 1 h (bilayers initially containing LFA-3 at 120 mol/~m 2 and 1,000 mol//xm 2) or at least 
30 rain (bilayers initially containing 300 LFA-3 mol/txm2). N, number of planar bilayers, n, Number of cells. 
* FITC-LFA-3 mol/l~m 2. 
* Bound LFA-3 mol/~m 2 in correct areas. 

Accumulation of LFA-3 in contact areas defined as the total (bound plus free) density of LFA-3 in a contact area divided by the density of LFA-3 in areas of membrane not in 
contact with cells. 
IIBound LFA-3 molecules per cell, × 10 -4. 
1 Mean _+ SD. 

purified LFA-3 used in this study. We also assume that 
clustering of CD2 on the T cell does not alter the two- 
dimensional Kd, although such clustering may alter adhe- 
sion properties (47). Our analysis therefore considers, as a 
first approximation, only geometric properties of the con- 
tact area. 

Bell and colleagues have suggested on theoretical grounds 
that the binding sites of adhesion molecules in a contact 
area may be limited to a "confinement region" (3, 4). 
While this is an intriguing possibility, the concept has not 
been experimentally tested. The height of the confinement 
region (tr) can be calculated from the following relation- 
ship (4): 

O" (~m) -~- (gdx,y (mol/ixm 2) × 10 I5 p~m3/dm 3) + (Kdx.y,z 
(mol/dm 3) × NA (mol/mol)) 

(D == 
LL 

C 

0 
ro 

8 

6, 

4 -  

2 -  

0 , 
300  350  4 0 0  4 5 0  

2 
LFA-3  Bound (molecu les / l~m)  

Figure 6. Scatchard analysis of binding between CD2 in Jurkat 
cell membranes and FITC-LFA-3 in planar bilayers. Data from 
Table II were transformed to bound LFA-3 and bound LFA-3/ 
free LFA-3 and plotted as described in Materials and Methods. 
Kd = 21 +-- 4 mol/ixm 2. Bma x = 430 ± 10 mol/l~m 2. Errors were de- 
termined by using a linear regression program (Regression, ver- 
sion M1.23; Blackwell Scientific Publications, Oxford, UK). 

where Kdx,y is the two-dimensional Kd, gdx,y,z is the three- 
dimensional Kd, NA is Avogadro's number and 1 1 = 1 
dm 3. Using the two-dimensional Kd of 21 mol/p.m 2 and the 
three-dimensional Kd of 6 t~M (13) (where both KdS are 
measured at room temperature), the calculated size of the 
confinement region for the CD2/LFA-3 interaction is 5.8 
nm. Our data provide strong support for the confinement 
region concept. If LFA-3 molecules were separated in the 
direction normal to the membrane by the same average 
distance as in the plane of the membrane, then the average 
separation distance would be 220 nm rather than 5.8 nm. 
Thus, confinement generates an effective increase in 
three-dimensional affinity of 220 nrn/5.8 nm, or 38-fold. 
Conversely, the average spacing of molecules at the three- 
dimensional Kd of 6 ~M predicts a two-dimensional Kd of 
230 mol/~xm 2. The effective increase in two-dimensional 
affinity due to confinement is therefore 230 mol/t~m2/21 
mol/~m:, or ll-fold. Note that the 38-fold increase in 
three-dimensional affinity is related to the 11-fold increase 
in two-dimensional affinity by the geometric relationship 
382/3 = 11. The decrease in two-dimensional Kd, generated 
by limitation of the CD2/LFA-3 interaction to a confine- 
ment region, appears to be important in maximizing bind- 
ing between CD2 and LFA-3 at physiologic densities on 
cell surfaces. Since cells with a high surface density of CD2 
and LFA-3 express on the order of 100 mol//xm 2 (9, 25, 33, 
37), and surface densities of LFA-3 can range considerably 
lower than this value (38), loss of the effect of confinement 
would result, at equilibrium, in a significant reduction in 
bond formation and a consequent reduction in adhesion 
strength. 

Our observations may also provide a physical basis for 
the finding that CD2 and LFA-3 are often coexpressed on 
the same cell, yet do not appear to interact in cis, i.e., in 
the plane of the same membrane (17,37). The crystal struc- 
ture of CD2 suggests that bilayers interacting through 
CD2/LFA-3 bonds are separated by ~15 nm (20,46). The 
smaller size of the confinement region for the CD2/LFA-3 
interaction (i.e., 5.8 nm) could suggest that CD2 and LFA-3 
are topologically constrained so that the angle formed be- 
tween the long axis of either molecule and a line perpen- 
dicular to the bilayer is limited to values that allow the 
binding surfaces to remain in the confinement region. If 
each molecule is constrained to a confinement region of 
(5.8 nm), the long axis of each molecule has length L (7.5 
nm for CD2), and the two molecules interact head-to-head 
through their NH2-terminal Ig-like domains, then the an- 
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gle of confinement (O) can be calculated using the rela- 
tionship: 

O = COS -1 [ (L-  (~ + 2)) + L]. 

For CD2 and LFA-3 the calculated angle of confinement 
is ~52 °. The mechanism by which the motion of CD2 or 
LFA-3 would be confined to the cone defined by this angle 
is unknown; it could, for example, involve interaction of 
the membrane proximal domain with the bilayer or of the 
entire molecule with the glycocalyx and neighboring gly- 
coproteins. Of note, the stalk region of six amino acid resi- 
dues that joins the COOH-terminus of IgSF domain 2 to 
the transmembrane segment is highly conserved among 
CD2 molecules in different species, suggesting that this re- 
gion has an important function (42). The crystal structure 
of CD2 suggests that a confinement angle >65 ° would be 
required for cis interactions to occur (20). Thus, our find- 
ings may provide a physical explanation consistent with 
the observation that cis, non-adhesion promoting, interac- 
tions do not compete with trans, adhesion promoting, in- 
teractions. Further, CD2 and LFA-3 are homologous (36), 
are closely linked genetically (50), interact through homol- 
ogous binding surfaces (46), and are postulated to have 
evolved from a common ancestor that interacted as a ho- 
modimer through cis interactions (49). Prevention of cis 
interactions of the common ancestor by topological con- 
straints, as manifested in the confinement angle, could 
have been critical in permitting the evolution of adhesive 
trans interactions, in analogy to the CD2:CD2 interaction 
seen in the CD2 crystal structure (20). We note that the 
calculated confinement distance of 5.8 nm and the pre- 
dicted membrane separation of 15 nm differ by only 2.6- 
fold. If either the two-dimension Kd measured here or the 
three-dimensional Kd measured by Davis et al. (13) is in 
error by this amount, then the argument for a confinement 
angle would disappear. 

The notion of a confinement region for adhesion recep- 
tors has implications for adhesive interactions mediated by 
receptors of similar or dissimilar size. The CD2/LFA-3 in- 
teraction occurs naturally along side other adhesion recep- 
tor interactions, including those involving LFA-1/ICAM-1 
and antigen receptors such as the T cell receptor (TCR) 
and CD16 (a low-affinity IgG Fc receptor). It has been 
pointed out (40, 46) that the molecular dimensions of CD2 
and LFA-3 (20, 46) are similar to those predicted for the 
TCR (12) and MHC proteins (6, 8), suggesting that CD2 
and LFA-3 may be effective in establishing a contact envi- 
ronment in which the TCR can function optimally. In con- 
trast, LFA-1 and ICAM-1 appear capable of mediating ad- 
hesion with a larger intercellular distance than that preferred 
by the CD2/LFA-3 or TCR/MHC protein interaction. 
Contact areas involving LFA-1 and ICAM-1 could be 
physically segregated (i.e., laterally separated) from areas 
containing CD2/LFA-3 and TCR/MHC proteins, allowing 
each system to maintain an optimal cell-cell separation 
distance and confinement region. Adhesion receptors with 
strikingly different geometries have been described: adhe- 
sion may be regulated in some systems by changes in inter- 
cellular distance (44). 

We have described a novel approach to the molecular 
analysis of adhesion molecule interactions in a contact 

area. The results allow calculation of a two-dimensional 
Kd that relates directly to the natural function of these 
molecules in adhesion. Our findings demonstrate that a 
three-dimensional K d must be interpreted in the context of 
additional topological constraints on adhesion molecules 
in a membrane environment to determine the relationship 
between two-dimensional and three-dimensional KdS. In 
fact, both the two- and three-dimensional KdS must be 
known to characterize fully the interaction of adhesion 
molecules. 
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